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It is well known that an activity expansion of the grand canonical partition function works well for attractive
interactions, but poorly for repulsive interactions, such as occur between atoms and molecules. The virial
expansion of the canonical partition function shows just the opposite behavior. This poses a problem for
applications that involve both types of interactions, such as occur in the outer layers of low-mass stars. We
show that it is possible to obtain expansions for repulsive systems that convert the poorly performing Mayer
activity expansion into a series of rational polynomials that converge uniformly to the virial expansion. In the
current work we limit our discussion to the second virial approximation. In contrast to the Mayer activity
expansion, the activity expansion presented herein converges for both attractive and repulsive systems.

DOI: 10.1103/PhysRevE.77.051133

I. INTRODUCTION

In an earlier paper [1] (hereafter referred to as I), we
showed that the activity (fugacity) expansion obtained from
the grand canonical ensemble is the natural procedure for
obtaining the equation of state of a reacting gas as the tem-
perature changes. In I we developed the activity expansion
for the Coulomb interaction among ions and electrons. For
the attractive interaction between ions and electrons in par-
tially ionized plasmas the activity expansion was particularly
useful, but for repulsive interactions among neutral atoms it
was less useful. In I we were concerned with low-density,
weakly coupled hydrogen. In subsequent papers we extended
the method to strongly coupled, high-Z plasmas [2-5]. The
validity of the method has been established by comparison
with experiments [6,7]. It has also been shown to give good
agreement with helioseismic measurements of the solar
equation of state (EOS) compared to other methods [8,9].
Molecules are a minor factor in the solar EOS, but must be
considered in the outer layers of lower-mass stars. That is the
primary motivation of the present work.

A number of methods to determine the range of conver-
gence of activity and virial (density) expansions have been
presented [10-13]. They show that the Mayer activity expan-
sion has a very limited range of convergence for repulsive
potentials, but fares much better for attractive potentials. The
opposite is true for the virial expansion, which gives good
agreement with molecular dynamics [14] and Monte Carlo
[15] simulations for hard spheres, but converges poorly for
attractive interactions. At electron volt temperatures, material
is composed of a plasma component of positive and negative
ions, which due to the electron-ion interaction is net attrac-
tive, and a repulsive component of neutral atoms and mol-
ecules. Consequently, an expansion that combines the best
features of both expansions is needed. In the current work we
show how to construct an activity expansion for the neutral
component that effectively recovers the much better per-
forming virial expansion.

There has been some earlier work dealing with how to
treat the EOS of gases that involve both attractive and repul-
sive interactions. Friedman and Ebeling [16] proposed a
method that attempts to combine the best features of both
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types of expansion. They divided the pressure into a density
expansion part that represents the reference system and an
activity expansion part that treats the deviations from the
reference system. Wertheim [17] developed a more limited,
two-density formalism that can be applied to reacting mol-
ecules. Neither of these methods is suitable for our purposes.
Alternatively, we have developed an activity expansion
method that treats the Coulomb interactions of the plasma by
the usual graphical re-summation procedure. However, the
terms in the activity expansion attributable to short-range
interactions are regrouped into a series of rational polynomi-
als that uniformly converge to the virial expansion [18]
(hereafter referred to as IT). The combined activity expansion
is then solved numerically to obtain the equation of state for
arbitrary states of ionization. We dealt with the plasma com-
ponent in [1-5]. In the present work we are mainly con-
cerned with developing methods that improve the conver-
gence properties of the repulsive component. We limit our
discussion to the order of the second virial approximation.
This is sufficient to calculate the EOSs of stars having mass
greater than about 0.15 solar.

In IT we showed that if terms in the activity expansion for
a one-component repulsive system are grouped and summed
in a specific way, it is possible to obtain an activity expan-
sion that has a greatly increased range of convergence com-
pared to the Mayer activity expansion. In Sec. II we summa-
rize results for the one-component problem and in Sec. III
we extend the method to two-component systems. In Sec. IV
we study the convergence properties of the reorganized ac-
tivity expansions for one- and two-component systems.

II. ONE VARIABLE

The pressure of a system of N particles at volume V and
temperature 7 from the canonical ensemble is

BP(n) =n+ S(n) —n(dS/on). (1)

In Eq. (1) n is the density and S(n) is the sum of the irreduc-
ible diagrams given by
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-
S(n)= > —B;, (2)
HJj—1

where the B; are virial coefficients.

The grand canonical ensemble gives the pressure as a sum
of reducible and irreducible diagrams and is a function of the
activity, z=(2s+ 1)\ e | where N=(27h%/mkT)"? is the
de Broglie wavelength, u the chemical potential, and s the
spin.

In I we showed that the grand canonical pressure and
density expansions in z have the forms

m-2 m
BP(z)=z+5(2)+ 2 %(éz) (Z—j) . (3)

m=2

9 z J m—1 aS m
s 3 (2R e

m=1
with
z=n exp(— dS/dn). (5)

S(z) is the sum of all irreducible terms now written in powers
of z instead of n, and the summations over differential op-
erators build in the far more numerous reducible diagrams.
For z less than the radius of convergence we expect that the
activity expansion pressure, Eq. (3), will equal the virial ex-
pansion pressure, Eq. (1).

In IT we considered the solution of Egs. (3) and (4) when
S(n) in Eq. (1) is truncated at the second virial coefficient.
When B; and higher virial coefficients are assumed to be
zero, the corresponding cluster coefficients b; are ~b’2"], SO
that the activity expansion involves an infinite number of
nonzero terms. In this simple case, Eq. (3) gives directly the
Mayer power series expansion in the activity, which is
known to have very poor convergence properties for repul-
sive interactions. To overcome this problem we showed in II
that summing all the terms in Eq. (3) that contain a factor
(0S/dz)? yields a rational polynomial. Systematically repeat-
ing the process for terms of order (JS/ Jz)!, where j=2, 3,
etc., yields an infinite series of rational polynomials that are
uniformly convergent. The reordered pressure equation is

» ”
—=z+S C;, 6
Pt +j:22 ’ (6)

_w’e
C,= 5 (7)
Zx3¢3
G=73 @®
J i3 k=3

Cj:Zx ¢., <1+ > Cj,k(Zy)k)’ )

J: k=1
p=(1-2zy)", (10)
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x=0d81dz, y=dPSIPz, (11)

and the c;, can be calculated according to

Ci’():O, Ci,l=0’ C4,2=2,

cig=kei  +[2G=1) = (k+2)]cjoy jot - (12)

It is the appearance of the denominator in powers of ¢ that
converts the activity series into a uniformly convergent series
of rational polynomials. There are other ways to reorganize
Eq. (3), but they are not uniformly convergent. In the present
work we have extended this procedure to two-component
systems. This has required that we develop a two-component
generalization of Eq. (3).

III. TWO COMPONENTS

Our starting point for deriving the two-component gener-
alization of Eq. (3) is again the density expansion of the
canonical partition function given by

P ﬁS(nl,nz) ﬁS(nl,nz)
_=nl+n2+S(l’l1,n2)—l’l1 —ny
kT (91’11 (91’12

il

(13)

where S(n;,n,) is the two-component generalization of (2).
We showed in I (see Appendix A in I) that when (13) is
mechanically stable n; and n, are related to the activities z;
and z, according to

aS/dny
b

ny=z,e nZZZZEaS/(?nZ. (14)

In order to invert Egs. (13) and (14) to get an expansion in z;
and z,, similar to (3), we use the method described in L. It is
convenient to change variables as follows:

(nyny) = (2 +up,z5 + uy), (15)

Where uy=n,—z and Ury=Ny—2»

In order to illustrate the method we expand Eq. (13) to
terms cubic in the variable S. This is sufficient to yield the
lowest-order cross-term involving the product z,z,. Higher-
order terms can be obtained in exactly the same way by
systematically adding in the contributions of terms of order
54,8%,....

From (15) we get, to order S3,

N z1<as)2 11(05)3
=1+l — +={— | +—=|—, 16
M= Zl(&nl) 2 z?n] 6 &nl ( )

aS S \* z[ S \?
}’lz:Zz-l-Zz(_) +Q<_) + 2_2(_) . (17)
C?nz 2 anz 6 C?nz

Expanding the S(n; n,) factors in (13) about z; and z, gives

af.  of. uidf. Pf.
nL,m)=f.+u;—+u,—+ 5 +UlU— —
f( 1 2) fz lﬂzl 2522 2(9221 1 2521522
2
u; Pf,
et R 18
2(92Z2 ( )

where f=S, dS/dny, or dS/dn, and f.=f(z,,25)-
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Now we look at the differences

aS aS
np—n— and ny,—n,T—. (19)
ny (9”12

From (18) we obtain

&S(nl,nz) aS. + azsz #S,  ui &S,
on 107221 ﬁZlaZz 2 (93Z]
FS, w3 P8,

+ + — 20

MIMZ&ZZI&ZZ 2 &Z]&ZZZ ( )
S(ymy) _9S. IS, IS, u T Ps,

an, 02, 10711 d2y 2(9222 2 (921(9222
FS, w5 S,
+uqu w3 21
M2 5 Py ZIO'}ZZZ 2 (?SZ2 ( )

where S.=5(z;,z,). By substitution of Eqgs. (20) and (21) into
(19) it is readily verified that all the terms in Eqs. (16)—(18)
that are composed of combinations of density and activity
factors cancel out. As a result, to terms cubic in S we get

as zl(ﬁSz>3 (as) s, &S,
n-m—=+—_\|_—" Uy ,
an, 6\ 9z 2\ 9z, 9z, Pz,
(22)
as 22<&SZ)3 z2(35z> as, &S,
Ny—Ny—=—"|—| ——= — Uy .
2 on, 6\dz)  2\dz 29z, Pz,
(23)

To complete the sum in (13) we need an expression for
S(ny,n,) in terms of z; and z,. Substituting for u; and u, in
(18) and keeping terms of order S°, we get

S =S, + (as>+ ( )Zazs
ny,n z z
2 ! ﬁZl ! 0721 0"211

38,38, &S, (asz)2
+ 32122__ D\ T
021 02, 021 d2p (%43

+< )2525 2( >2a25
. &) ﬁzzz 4] (9221

Now substituting Egs. (22)—(24) into Eq. (13) we find that
the remaining negative terms cancel, giving

P (aS ) z2<asz>2 2( )ZﬁzS
—=++S,+ + -] +
kT 2\ dz, 2\ dz, iz, Pz

( )2&2S (é’S ) z2<3sz>

+ = + ==

&Zz 8222 &zl 6 512
3S. dS. (925

+z215 25
! 2(9Z1 (9Z2 (?Z] (9Z2 ( )

2( )2(925z
02, (9222-

(24)

Equation (25) can be put in the more compact form
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P p P ¢
E:ZI+Z2+SZ+Q2,1+Q2,2+Q2,2’ (26)
where
i=2
1 asz)z
=—>zzul =], 27
e 2!,2‘ (&zi @7
s, \?
, 28
052 = 3%%@ (ai) @8)
r?s s, z?zS

.
Q2’2 (921 aZ2 (921 (922 (29)
The superscript p indicates differentiation with respect to a
single variable and the superscript ¢ indicates differentiation
with respect to more than one variable

Following the same procedure as just described, we have
worked out the contributions to the pressure from terms of
order §* and S°:

] asz>4

z, —zl— > 30
2’3 4'% 071, r?z,- (07Z,- (30)
o {3 o9 9 ]1// 61)

. 21% < s

237 34918 z?zl &Z] 72 2(9 - 12
SR SR (‘QSZ)S (32)

= St 1Zl‘92; ‘oz Moz N\ oz;)

22|, 0 d as, da d d5,dS,
Q“'T{“a_zfla_zfl(ﬁz) 0 5 o 2,
+4iz2 J —z (aS ) ](//12, (33)
(722 ¢9Z2
38,98, &S,
o= (34)

ﬁZl (9Z1 (?Zl O')ZZ

By induction we conclude that in general

=2
1 J m—1 as m+1
05, = > Zi(_Zi) <_Z> , (35)

(m+ 15 "\dz 9z
Jj=m—1 m
122
m! 55 \J
(9 m—j—l 19 j—l aSZ m—j—l aSZ j—l
X\ ——z 2 - — | ¥
‘921 t?Zz aZl (922

(36)

The pressure is thus given by
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m=%

P
pEatatSt > (05, +05,). (37)
m=1

We now follow the same procedure used for the one-
component problem and sum all terms in Eq. (37) involving
(0S/dz;)%. This is a much more involved process than it was
for the one-component case. The result is

1
Crp= E(lelal +25X,05)/ e (38)
where
a; = x1(1 = 1) + 2%y12, (39)
a, = x(1 = 11) + 211 y12, (40)
v =810z, 925, 1= (41)

bre=1-2z1y1 —Zz)’22+2112()’11y12—)’%2)- (42)

Equation (38) is again a rational polynomial where ¢,, is the
two-component generalization of ¢. Carrying out the sums to
obtain higher-lying coefficients gets progressively more in-
volved. However, we have been able to sequentially sum the
infinite sets of terms that include the factor (dS/dz;) for j
=3,4,5, giving

1
Crz3= E(Zl a) +2,0)/ b3, (43)
1 4 1 4
Coy= g[zlal(S -3t-2¢)]+ i[zzaz(:; -3t =2¢)]

1
+ Z}’122122a%a§>/¢§c’ (44)

1
Cys5= (5&“?{[15(1 —15)* =20, (1 — 1) + 6¢)§c]}

1
205[(15(1 = 1) = 20¢hy.(1 — 11) + 6.43,)]

=
5!

+L 2o {a[(1=1)(1 +215) + 2y5,2125]
12)’121112“1“2 | (L= 1)L+ 28) + 2Y15,212;

+ay[(1 = 1) (1 +22)) + 2y1,212,]}
1

e+ ), )

The higher C, ; coefficients can also be obtained as rational
polynomials, but become too complex to be of practical
value

Knowing the C, ; coefficients up to j=5 is not sufficient
to give accurate results over the entire region where the sec-
ond virial expansion is the dominant term. However, we have
found that the C,; coefficients in Eqs. (43)-(45) are well
approximated by adding modified forms of the one-
component C; coefficients for each component. Explicitly,

J
the first few coefficients are
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2 2
a 21X 2%
i e 46
2 2¢) 2¢, (46)
3 3
o g (47)
6¢) 6¢
€ty 250 o= D]+ 221 4 2 1)
= + -]+ + -],
247 04 ! 244 2
(48)
2
¢i=1- 2 ZiYij» (49)
j=1
S
xi:_z (50)
(9Z,‘

In order to couple the one-component terms in Egs.
(46)—(48), we have replaced z,y, in the first component by
Ejilzlyl ; and z,y, in the second component by Ejilzzyzj.
Using a combination of the exact and approximate coeffi-
cients gives for the pressure

P .jX jmux
—=zl+zz+S+EC2’j+ E C‘z"j, (51)
kT j=2 j=jX+l

where j,=5 unless j,=3, in which case j,=j .-

To show the connection between the exact and approxi-
mate C,;, we assume that By ;=B,=B»=B8, but that n,
# n,. Then,

X =x,=2(z; +2,)B (52)
and
52=Cry=2B%z;+2))/[1 -2B(z; +27)].  (53)

Similarly, for the same conditions, the higher-lying C‘z‘,j can
be shown to be equal to the known exact C, ;.

We have found numerically that when the B;; have a wide
range of values the approximate forms of the C,; still pro-
vide a good approximation. Consequently, when terms
through C, 5 are not sufficient, we can improve the results by
using Egs. (46)—(50) to approximate terms for j>5.

IV. NUMERICAL EXAMPLE

The purpose of Secs. II and III was to develop an activity
expansion that uniformly converges to the virial expansion to
O(n?) for both attractive and repulsive interactions. Figure 1
shows P/ Py vs n. It demonstrates how well Eq. (6) achieves
this result for a one-component gas. For a simple example
that illustrates the method, we have assumed B,=-0.5. In
applications for real gases we use interaction potentials ob-
tained from Hartree-Fock [19] or quantum Monte Carlo
methods [20] to calculate the virial coefficients. The activity
was obtained from numerical iteration to satisfy the density
relation
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FIG. 1. Ratio of the activity expansion pressure to the second
virial pressure Py. Pressure from Eq. (6) truncated at j,,, (dotted).
Truncated Mayer activity expansion at O(z?) (dashed) and O(z”%)
(open circles).

n=z . (54)

We have not used Eq. (5) to obtain the activity because it is
valid only in the region where the series has converged. Oth-
erwise, the pressure and density are inconsistent. Figure 1
shows that as j,,, increases Eq. (6) uniformly converges to
the second virial pressure at increasing values of the density;
i.e., each increase in j,,, by a factor of 4 results in a fixed
incremental increase An to the value of n where P/P, con-
verges to unity. Results are also shown for the Mayer activity
series truncated at different orders. When only terms 03
are included, the pressure diverges from the virial result at
very small values of the density, reaching a value P/P,
=4/3 at n=1/4. No physical solutions exist at larger values
of n. It is not shown in Fig. 1, but we note that when the
calculations are repeated, sequentially adding higher-order
terms in z/, the behavior is different depending on whether j
is even or odd. In the region where n<<1/4 the results for the
even values approach the virial result from above while the
results for the odd values approach it from below. At about
0(z*°) both sets of results nearly coalesce. As the number of
terms in the Mayer pressure expansion is increased further,
the maximum density at which real solutions exist ap-
proaches 0.2785 and P/P,— 1. As shown in Fig. 2, this limit
is approached very closely when more than 60 terms are
included. As expected, the Mayer expansion in powers of z
fares very poorly.

Figure 2 shows the ratio of the pressure from Eq. (51) to
the second virial pressure of a two-component system having
B,=0.125, B{,=0.3535, By=1.1, and n,=2n,. Results are
shown for two different approximations of Eq. (51). Ap-
proximation 1 uses the exact C,; coefficients where they are
known and the approximate coefficients otherwise. Approxi-
mation 2 uses entirely the approximate coefficients. We have
calculated the activities directly from a numerical solution of
Eq. (51) and the density relations
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FIG. 2. P/ Py vs n, for two different approximations of Eq. (51).
Approximation 1 uses the exact C, ; coefficients when j=35 and the
c, ; When j>5; approximation 2 uses entirely the c. ; coefficients,
i.e., j,=0. Results are shown for j,,=2 (dot-dashed); 5 (long-
dashed); 10 (short-dashed); 40 (dotted); 320 (solid). At each value
of jax the approximation 1 results lie closest to unity. Results for
the Mayer activity expansion truncated at 0(1%,15) are shown as
diamonds.

JdP/IkT
ni =Z[ az 9
1

n;={ny,ny}. (55)

Both versions of Eq. (51) yield results that agree closely with
the virial pressure out to n,=0.5 when j,=j,..=5, but the
deviation from unity is much smaller for approximation 1.
AS jnax 18 increased, both versions yield improved agreement
with the virial expansion. Both approximations are uniformly
convergent, but due to the use of the approximate coeffi-
cients [Eq. (46)—(48)] they are at variance with the virial
pressure. At n,=1, when j,,=320, the deviation from unity
for version 1 is about 4%, while the deviation for approxi-
mation 2 is about 12%. When n,=2n,=1, PV/NkT=2.0. In
most cases, the third and higher virial coefficients make a
significant contribution when the nonideal pressure is this
large. In the density range where PV/NkT<1.6, the second
virial approximation is normally the dominant term. In this
region the errors from approximation 1 are at most a few
percent. Results for the Mayer activity expansion truncated
at O(z7,z3) are also shown in the figure. As for the one-
component case, they diverge from the virial pressure start-
ing at very small values of the density. The solution termi-
nates at n,=0.1 and P/P,=1.18. No physical solutions exist
for larger densities. Addition of higher-order terms (not
shown) results in behavior similar to that of the one-
component case.

V. DISCUSSION

We have presented a procedure for generating an activity
expansion with improved convergence properties compared
to the Mayer activity expansion. Herein we have only explic-
itly considered one and two-component systems, but the pro-
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cedure can be extended to multicomponent systems. We have
been particularly interested in repulsive interactions since
they have a very limited range of convergence for the Mayer
activity expansion. Based on work started earlier, we ob-
tained expressions that generate P/kT from differential op-
erations on S, the sum of irreducible diagrams. We then
showed that these operators could be worked out and the
resulting terms regrouped into a uniformly convergent series
of rational polynomials that give results equivalent to the
virial expansion. Herein we have considered only the second
virial approximation, which is sufficient to treat most stellar
conditions. However, due to the complexity of the high-lying
coefficients in the resulting series, we have used an approxi-
mation that results in some small discrepancies with the sec-
ond virial pressure. The procedure presented here can also be
applied when higher virial coefficients are nonzero. We have
carried this out for the case that both B, and B; are nonzero,
but it is beyond the scope of the present paper to discuss it
here. For applications involving more than two neutral com-
ponents we have found that approximation 2 of Eq. (51)
gives accuracy similar to the two-component case (see Fig.
2) when PV/NKT is less than about 1.6.
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The activity expansion that we have described herein is of
little value for applications involving purely repulsive inter-
actions, since at best they only recover the much simpler
virial expansion. However, at electron volt temperatures real
materials are composed of ions, atoms, and molecules. The
ionic component involves the Coulomb interaction, which
introduces many-body physics. Our method for treating this
part of the problem was described in [1-5]. The interactions
involving the atomic and molecular species are short ranged
and can be treated with the activity expansions presented
herein. The complete expression used to treat partially ion-
ized plasmas combines the two into a single activity equation
that incorporates the best features of the virial and activity
expansions. The equation of state is obtained iteratively by
satisfying the multicomponent density relations [Eq. (55)].
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